
The DoD Source for Software Technology Information.

Vol. 3- No. 4
Software Reliability

Software

Reliability

A Software Engineering Course for
Trustworthy Software
by Larry Berstein, Have Laptop - Will Travel

In This Issue:

A Software Engineering Course
for Trustworthy Software 1

How Reliable are Requirements
for Reliable Software? 2

Using Failure History to
Improve Reliability 6

The SCR Requirements Method:
Developing High Assurance
Software Systems11

Team Software Process
Reliability Results 15

IAC Awareness Conference . 17

Practical Software and System
Reliability Estimation 18
Software Reliability
Resources on the WWW...... 20
DACS Products
Order Form Insert

www.dacs.dtic.mil/
awareness/newsletters/

listing.shtml

Trustworthy software always
provides the same results to the
same input. Trusted software must
be achieved as people come to
depend on software-based systems
for their livelihoods and, as with
emergency systems, their very lives.
Software is fundamental to
computerized systems, yet it is
rarely taught as an entity whose
trustworthiness can be improved
with specific techniques.

A software engineering course is
proposed to treat the issues of
software trustworthiness. Feedback
on the need and contents for such a
course is sought. The Committee
for National Software Studies
sponsors a web page
(www.cnsoftware.org) discussing
trustworthy software and provides a
means for commenting on the
subject.

Software has a weak theoretical
foundation, yet there exists a body
of knowledge that is sometimes used
to improve software trustworthiness.
The reason for a system failure due
to software is often due to
something that could have been
avoided with a different type of
design. Unfortunately the State-of-
the-Practice lags the State-of- the-
Art. Pro. Shiu-Chin of Syracuse
University writes that we should

“…develop…curricular support

for…design methods…as a means

to support system design. The level

of professional practice will

improve when we have practical

high-assurance design methods

which work-and when we train our

students to use them.”

Most current software theory
focuses on its static behavior by
analyzing source listings. There is
little theory on its dynamic behavior
and its performance under load.

Continued on page 8

Lon R. Dean
Thank you for your interest in the Software Tech News.Past issues are archived on the Data & Analysis Center for Software's Website at: http://www.dacs.dtic.mil/.

http://www.dacs.dtic.mil/
http://www.defenselink.mil/
http://www.dtic.mil/
http://www.disa.mil/
http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml
http://www.cnsoftware.org/
http://www.dacs.dtic.mil/

STN2

Introduction

Missing, inaccurate or incomplete
requirements lead to errors in
software development and usually
also prevent these errors from being
detected during the testing phase.
Functional testing is based on the
requirements; a missing or
inaccurate one will not be detected.
Structural testing is based on the
developed code; an unstated
requirement is unlikely to be
implemented and will not be
detected. Operational failures due to
omissions or inaccuracies cause
major economic losses or even
casualties, and corrective measures
are far more costly than they would
be if the defect had been caught
earlier. A distinguishing feature of
reliable software is that it contains
fault tolerance provisions, such as
alternative exits when the assertions
fail, roll-back and re-try, recovery
blocks, or multi-version
programming. In most cases these
provisions prevent or attenuate the
effect of hardware and software
failures that would have occurred in
their absence, but there have also
been incidents where the fault
tolerance objectives have not been
achieved and the reasons for the
failure have usually included
missing or ill-formulated
requirements.

In the body of this paper we first
describe what is missing in
requirements, then why it is
missing, and after that we explore
corrective measures and test
strategies for verification of reliable
software.

What is Missing in

Requirements for

Reliable Software ?

Difficulties in formulating
requirements for reliable software
frequently arise from inability to
identify (a) all sequences that invoke
fault tolerance provisions and (b)
future operational environments.
We discuss these in turn.

An analysis of failures in a
telephone switching system paper
notes that (a) the largest cause
category (44% of failures)
comprised combination hardware/
software faults. In most cases it was
the inability of the software to
recover from hardware faults that it
was intended to protect against, and
(b) that the faults leading to the most
severe consequences “were
introduced during the specification
period and are therefore difficult to
solve.”1 Similarly, a GAO report on
serious problems in ten computer-
based systems traces these to failure
to implement “a process for
disciplined, consistent procedures
for software requirements
management, quality assurance,
configuration management, and
project tracking.”2 Requirements
management is the key since all the
other functions depend on it.

How Reliable are Requirements for Reliable Software?
by Herbert and Myron Hecht, SoHar Inc.

The reasons for the deficiencies in
requirements include disbelief that
more than one failure can occur
during an operating interval, or
neglecting the possibility that a
single event (e. g., a short power
interruption) can trigger several
fault responses in the system is
frequently overlooked. Even where
requirements for fault tolerance
provisions are explicit, the designers
may misinterpret them unless a
specific review or consultation
process is provided. This is seen in
an experiment sponsored by NASA
to investigate the independence of
fault responses in redundant
software.3 The specifications for the
program were very carefully
prepared and then independently
validated to avoid introduction of
common causes of failure. Each
programming team submitted their
program only after they had tested it
and were satisfied that it was
correct. Then all 20 versions were
subjected to an intensive third party
test program. The objective of the
individual programs was to furnish
an orthogonal acceleration vector
from the output of a non-orthogonal
array of six accelerometers after up
to three arbitrary accelerometers had
failed. Table 1 shows the results of
the third party test runs in which an
accelerometer failure was simulated.

Table 1. Tests of Redundancy Management Software

No. of Prior Observed Total Failure

Anomalies Failures Tests Fraction

0 1,268 134,135 0.01

1 12,921 101,151 0.13

2 83,022 143,509 0.58

STN 3

The number of rare conditions
(anomalies) responsible for failure is
one more than the entry in the first
column (because a new
accelerometer anomaly was
simulated during the test run, and it
is assumed that the software failure
occurred in response to the new
anomaly). In slightly over 99% of
all tests a single rare event
(accelerometer anomaly) could be
handled as indicated by the first row
of the table. Two rare events
produced an increase in the failure
fraction by more than a factor of ten,
and the majority of test cases
involving three rare events resulted
in failure. Although the statement of
the problem clearly required that up
to three anomalies had to be
tolerated, the software developers
had difficulties in providing for the
required response to more than a
single malfunction. Also, the
developers’ own test scenarios did
not sufficiently explore multiple
failure conditions.

The second difficult area for
requirements is the response to
changes in the system environment.
Computers and operating systems
are periodically updated and new
models of sensors or actuators may
be introduced. The application
program may be reviewed and tested
for proper operation in the new
environment, but safeguards to
prevent use of the software in the
wrong configuration are frequently
missing. Thus, if a problem
develops with the most recent
release of the operating system and
it is decided to revert to the previous
one, the need to go back to the old
application software may be
overlooked. Several crashes of
important programs have been

attributed to such lapses in
configuration management.
Providing a version check as part of
the initialization should be a
mandatory requirement but
apparently it is not.

Why Requirements are

Incomplete

The primary cause of incomplete
requirements is the waterfall model
that assumes that requirements can
be completely formulated at the
outset for systems of any scale.
That, coupled with a procurement
system that discourages continuous
updating of user needs, casts in
concrete requirements that were
developed under severe time
constraints and many months,
possibly years, before the
development started.

In a large organization, and
particularly in branches of the
government, at least three entities
participate in the formulation of
requirements: the user, the funding
agency, and the office in charge of
the development. The first step in
the process is a statement of
operational needs generated by the
user. This is typically forwarded to
the developer for obtaining a
budgetary estimate, and then the
need and the estimate are submitted
for funding. In favorable
circumstances the funding will be
approved, but usually after
considerable delay. Once approval
has been obtained, the emphasis is
on avoiding further delay.
Previously generated requirements
are dusted off and only cursorily
reviewed to determine that they
really represent current needs.

Finally, we want to reiterate the
difficulty of conceptualizing and
understanding the effect of multiple
failures that was already mentioned
in the preceding section. The
resource-constrained environment of
a typical software development
provides a further obstacle to
evaluating whether the requirements
fully cover all required
combinations of failures.

Corrective Measures

In the two preceding sections we
have seen that requirements for
highly reliable systems may be
incomplete, particularly with regard
to the reliability related features.
Missing or incomplete requirements
are not likely to be identified by
either functional or structural testing
and thus tend to persist into the
OPEVAL and usage phases,
sometimes constituting safety
hazards and always imposing a very
high cost for correction in the late
lifecycle phases.

Since we have identified the
waterfall model as a root cause of
incomplete requirements it is
appropriate to mention techniques
that recognize that requirements
evolve during development. Among
these are the spiral development
model4 and rapid prototyping.5

Narrower techniques are
summarized in Table 2.

As a baseline (against which
corrective measures will be
evaluated) let us assume that the
software development proceeds in a
disciplined manner, and that
applicable techniques from the
requirements engineering discipline
have been used.6

Continued on page 4

STN4

How Reliable are Requirements for Reliable Software?
Continued from page 3

References on page 5

The first two entries in the above
table address primarily logical gaps
or inconsistencies. The three test
methods that are grouped together in
the next row go beyond the
traditional requirements format and
recognize the need for more user
interaction with the development.
Random testing has been shown to
provide high coverage in the cited
reference, but it needs an oracle to
identify the correct test outcome
where that is not obvious.

While user involvement during
development will help, the typical
task-oriented user does not
recognize deficiencies in exception
handling or the need for automated
configuration monitoring.
Requirements elicitation improves
the effectiveness of user interaction
but must be directed to areas where
deficiencies are likely to exist. This
requires knowledge of past failures
and better utilization of existing
databases for identifying the role of
incomplete requirements. Thus
collection and analysis of failure
data emerges as the key to long term
improvements for formulation of
reliable requirements for reliable
systems.

Table 2. Techniques for Avoidance of Incomplete Requirements

TECHNIQUE BENEFITS

Formal Methods7 Can detect some inconsistencies and instances of incomplete requirements.

Condition Tables8 Very effective detection of incomplete requirements.

Scenario-Based Testing9 All of these introduce elements of OPEVAL into the earlier test phases.

Thread-Based Testing10 Effectiveness depends on skill of the implementers.

Task-Based Testing11

Random Testing12 Multiple Random Number generators for groupings of exception conditions

can detect missing requirements for combination events.

About the Authors

Herbert Hecht founded SoHaR in
1978 and is currently Chairman of
the Board. Previously he held
engineering management positions
at The Aerospace Corporation and at
Honeywell Flight Systems. His
chief professional interest is the
reliability and availability of
computer based systems. He has
served as a Governor of the IEEE
Computer Society and as a visitor in
Computer Engineering for ABET.
Recently he has been on the
National Research Council
Committee that evaluated long term
use of the International Space
Station.

He earned BEE and MEE degrees
from City College and Polytechnic
University of New York,
respectively, and received a Ph. D.
in Engineering from UCLA.

Myron Hecht is co-founder and
President of SoHaR Incorporated.
His activities in basic research and
development at SoHaR have
resulted in new architectures for real
time distributed systems,
methodologies for the development
and verification of fault tolerant
software, and design techniques for
highly reliable distributed systems
for process control and C3I. In prior
employment he developed and
verified computer codes for nuclear
power plants at SAIC and
Westinghouse.

Mr. Hecht has an M.B.A, an M.S. in
Nuclear Engineering, and a B.S. in
Chemistry, all from UCLA. He is a
member of the IEEE and has served
its standards committees. He has
authored or co-authored more than
60 refereed publications in the fields
of software quality and metrics,
computer dependability,
maintenance resource allocation, air
traffic control, and nuclear
engineering.

SoHaR is an acronym for
Software and Hardware Reliability.

http://www.sohar.com/

STN 5

References

1. K. Kanoun and T. Sabourin, "Software Dependability of a Telephone Switching System", Digest, Fault Tolerant Computing

Symposium-17, pp. 236-241, Pittsburgh, Pa., June 1987

2. General Accounting Office, High Risk Series: Information Management and Technology, GAO/HR97-9, Feb 97

3. D. E. Eckhardt, A. K. Caglayan, J. C. Knight, et al., "An Experimental Evaluation of Software Redundancy as a Strategy for
Improving Reliability", IEEE Trans. Software Engineering, vol 17 no 7, July 1991, pp. 692 - 702

4. B. Boehm, "A Spiral Model of Software Development and Enhancement", IEEE Computer, May 1988, p.61

5. R. Balzer, N. Goldman and D. Wile, “Operational Specification as the Basis for Rapid Prototyping”, ACM Software

Engineering Notes, Dec 82, pp. 3 - 16

6. Mylopoulos, J (ed.), Requirements Engineering, IEEE Computer Society, 1997

7. Susan Gerhart, Dan Craigen and Ted Ralston, “Observations on Industrial Practice Using Formal Methods”, Proc. 15th

International Conference on Software Engineering, IEEE Computer Society Press, Baltimore, May 1993, pp. 24 - 33

8. D. L. Parnas, G. J. K. Asmis, and J. Madey, "Assessment of Safety-Critical Software", Proc. Ninth Annual Software

Reliability Symposium, Colorado Springs CO, May 1991

9. Jarke, M., and R. Kurki-Suonio, eds. Special Issue on Scenario Management, IEEE Transactions on Software Engineering,
vol 24 no 12, December 1998

10. Borgia, W. M., and N. J. Hrdlick,, “Thread-Based Integration Testing”, Software Tech News, vol 3 no 3, (DACS), January 2000

11. Telford, D. G., “Task-Based Software Testing”, Software Tech News, vol 3 no 3, (DACS), January 2000

12. P. G. Bishop, ed., Dependability of Critical Computer Systems 3 - Techniques Directory, Elsevier Applied Science,
ISBN 1-85166-544-7, 1990

Author Contact Information

Herbert Hecht

Chairman of the Board
SoHaR Incorporated

8421 Wilshire Blvd. #201
Beverly Hills CA 90211

Voice: (323) 653-4717 x110
Fax: (323) 653-3624

herb@sohar.com
www.sohar.com

Myron Hecht

President
SoHaR Incorporated

8421 Wilshire Blvd. #201
Beverly Hills CA 90211
Voice: (323) 653-4717
Fax: (323) 653-3624

myron@sohar.com
www.sohar.com

DoD Software Tech News

Editorial Board Members

Lon R. Dean, Editor,

DoD Software Tech News

ITT Industries

Paul Engelhart,

DACS COTR

Air Force Research Laboratory
Information Directorate/IFTD

Elaine Fedchak

ITT Industries

Dr. Jack Fergeson

ODUSD(S&T)

Morton A. Hirschberg, Editorial

Board Chariman

US Army Research Laboratory
(Retired)

Thomas McGibbon,

DACS Director

ITT Industries

Marshall Potter

DDR&E (IT)

Dan Snell,

DACS Deputy Director

ITT Industries

Nancy L. Sunderhaft

ITT Industries

NEW DACS
Technical Report

Mining Software
Engineering Data: A Survey

This report discusses the state-of-the-
art, as well as recent advances in the use
of data mining techniques as applied to
software process and product
information. This report includes:

1. A discussion on data mining
techniques and on how they can
be used to analyze software
engineering data.

2. A bibliography on data mining
with special emphasis on data
mining of software engineering
information.

3. A survey of the data mining tools
that are available to software
engineering practitioners.

4. A listing of web resources for
data mining information.

Ordering Information: A bound, hard
copy of this technical report is only $40.
This may be purchased via:
Web: www.dacs.dtic.mil/forms/
orderform.shtml or
Phone: (800) 214-7921.

http://www.sohar.com/
http://www.sohar.com/
mailto:myron@sohar.com
mailto:herb@sohar.com
http://www.dacs.dtic.mil/forms/orderform.shtml
http://www.dacs.dtic.mil/

STN6

Introduction

Achieving 100% software reliability
may seem an unreasonable goal.
Software developers and consumers
of many software products are
largely unsure about the reliability
of their product or purchase. Today,
many opportunities exist for some
assurance of software products.
Current practices and issues address
process (e.g., CMM, ISO9000),
people (e.g., software engineering
degrees, certification exams,
licensing) and product (e.g.,
measurement of the product); they
encompass major areas of progress
toward software reliability. One
aspect of the product concerns the
usage of history data of faults and
failures of software systems,
collected from either the
development and assurance
processes or operational use, to
improve reliability of software
products. Information contained in
these histories characterizes the
nature of faults, or defects, for a
specific product line. The objectives
are to use the history to determine
how to prevent faults from entering
into the product, to remove faults
before the product is released, and to
measure a product’s frequency
profile against others in the same
domain. Finally, the histories may
indicate problems indicating the
need for better methods to prevent
or detect faults, hence enabling
justifiable research ideas.

Using Failure History to Improve Reliability in
Information Technology
Dolores R. Wallace, National Institute of Standards and Technology

Case Studies

Two case studies indicate how
history data can be used. One is a
study of failures of medical devices
after release. The generic lessons
learned here can be applied in other
domains and the specific lessons
may indicate how to study a domain
and use failure history to ensure that
reliable software is produced before
the system is released.

Medical Device Failures

The medical device failures,
involving no deaths or serious
injury, occurred between 1983 and
1997. The 342 software-related
failures were due principally to
faults in logic, calculation, data,
change impact, and others such as
requirements, omission, quality
assurance, timing, interface,
initialization, configuration
management and fault tolerance.

Many of these faults could have
been prevented with requirements
verification and with quality
assurance practices aimed at the
specific types of faults. For
example, several of the calculation
faults stemmed from using incorrect
specifications for floating point
calculations of the target computer
or from not checking formula
carefully against their source.
Others, such as faults in logic with
multiple conditions, indicate a need
first for specifying the requirements
correctly and second for finding
methods for testing multiple
conditions without exhaustive
testing. In other instances,

configuration management practices
did not carefully retain version
control for different international
specifications. These are examples
of specific lessons.

A different type of lesson is that
knowledge of faults characteristic of
a particular system aids decisions to
direct verification and validation
resources for optimum value.
Specifically, the results indicate how
failure data can be used to examine
worst case scenarios in a product
line and from there to identify how
best to apply the quality practices to
search for specific types of prevalent
or characteristic faults for that
product line. Results of this study
provide an affirmation of generally
accepted quality practices regardless
of domain and may indicate the
need for more sophisticated
corrective techniques for solving
requirements specification and logic
problems.

Transportation Application

The second case study involves an
application in transportation with
data collected during the activities
of requirements specification
through acceptance testing of at
least some parts of the system. In
this instance, certain lessons had
already been learned, that is,
because most faults occur in the
requirements specification, more
effort should be expended to catch
faults during that activity. The
prevalent classes in this project are
logic, specification, output,
computation, performance,
improvement, and initialization,

STN 7

with interface, omission, data
handling, input, and documentation
comprising the remaining groups.
There was not enough information
to classify approximately 10% of the
faults.

Each fault is associated with its
severity level and the development
or test activity during which it was
discovered. For example, 32% of the
most severe problems were
discovered during requirements
specifications, but 31% were
discovered during system test. Of
all faults, 53% were discovered
during requirements specification
but 15% were caught during
integration test, and 13% during
system test. Why did those faults
escape detection until so late,
especially since 21 of those in
system test had severity level 1?
Could some of them have been
detected with other activities during
design and coding? Further
examination of the fault classes
detected in each group may lead to
an understanding of issues and
verification methods to be addressed
better in the next similar project.
More data are needed from
additional projects to answer the
types of questions posed by these
two case studies.

NIST Repository and

Support Tools for

Collection of Data

One activity of the Error, Fault, and
Failure Repository Project in the
Information Technology Laboratory
of the National Institute of
Standards and Technology (NIST) is
to collect additional data from

projects. The objective of the
project is to improve software
quality by establishing fault models
that reflect software failures in real-
world systems. Greater
understanding of the types of
software errors that lead to faults
and failures, along with the
frequency and distribution of those
faults, may result in the production
of more reliable software. Project
data from many domains will enable
researchers and practitioners to
understand weaknesses in current
development and assurance methods
and to affirm benefits of generally
accepted quality practices. Some
data may demonstrate the need for
further research in selected topics,
such as requirements specification
and testing of complex systems.
The NIST repository and support
tools for collection of data are
available to the public at

http://hissa.nist.gov/effProject/
project.html

About the Author

Ms. Wallace leads the Reference
Data: Software Fault & Failure Data
Collection Project
(http://hissa.ncsl.nist.gov/effProject)
which provides metrology and
reference data for software
assurance. She is interested in
methods of experimentation and
measurement of software
technology. Her publications on

software verification and validation
include NIST SP 500-234,
Reference Information for the
Software Verification and Validation
Process, V&V articles in the
Encyclopedia of Software
Engineering (Wiley) and the IEEE
Tutorials on Software Requirements
Engineering and Software
Engineering. She is co-author,
Software Quality Control, Error
Analysis, and Testing, Noyes Data
Corporation, 1995 and co-chair of
the IEEE STD 1012 -1998, Software
Verification and Validation, and has
published papers on software
experimentation and other software
engineering topics. She received the
1994 Department of Commerce
Bronze Medal Award. Currently she
serves on the editorial board of the
American Society for Quality's
Software Quality Professional and
the Industrial Advisory Board for
the IEEE Computer Society's
Software Engineering Body of
Knowledge Project. She has a
master's degree in mathematics from
Case Western University.

Author Contact Information

Dolores R. Wallace

National Institute of Standards and
Technology

Information Technology Laboratory

dwallace@nist.gov
http://hissa.nist.gov/

http://www.dacs.dtic.mil/
http://hissa.ncsl.nist.gov/effProject
http://hissa.ncsl.nist.gov/effProject/project.html
http://hissa.ncsl.nist.gov/
http://hissa.ncsl.nist.gov/
mailto:dwallace@nist.gov

STN8

Often we do not know what load to
expect. Dr. Vinton Cerf, inventor of
the INTERNET, has remarked
"applications have no idea of what
they will need in network resources
when they are installed." As a
result, we try to avoid serious
software problems by over
engineering and over-testing. The
Federal Food and Drug
Administration of the USA notes:

“Software verification includes

both static (paper review) and

dynamic techniques. Dynamic

analysis (i.e., testing) is concerned

with demonstrating the software’s

run-time behavior in response to

selected inputs and conditions.

Due to the complexity of software,

dynamic analysis alone may be

insufficient to show that the

software is correct, fully functional

and free of avoidable defects.

Therefore, static approaches and

methods are used to offset this

crucial limitation of dynamic

analysis. Dynamic analysis is a

necessary part of software

verification, but static evaluation

techniques such as inspections,

analyses, walkthroughs, design

reviews, etc., may be more effective

in finding, correcting and

preventing problems at an earlier

stage of the development process.”

Software engineers cannot ensure
that a small change in software will
be limited to a small change in
system performance. Industry
practice is to test and retest every
time any change is made in the hope
of catching the unforeseen
consequences of the tinkering. The
April 25, 1994 issue of Forbes

Magazine pointed out that a three-
line change to a 2-million line
program caused multiple failures
due to a single fault. There is a

lesson here. It is software failures,
not faults that must be measured.
Design constraints that can help
software stability need to be
codified before we can hope to
deliver reliable performance.
Instabilities arise in the following
circumstances:

1. Computations cannot be
completed before new data
arrive,

2. Rounding-off errors build or
buffer usage increases to
eventually dominate system
performance,

3. An algorithm embodied in the
software is inherently flawed.

Trustworthy Software is now
emerging as a technology area of
interest. The IEEE is considering
forming a special interest group, the
Center for National Software
Studies is sponsoring a web page
devoted to exploring trustworthy
software and the National Institute
of Standards and Technology
(NIST) gathers data on software
defects and explores trustworthy
issues.

A course dealing with these issues is
being developed. It will feature
design constraints that make
software trustworthier. The topics
planned include:

1. Case Histories of Failures.

2. Requirements Validation

3. Stability Analysis

4. Software Connectors

5. Ethics

6. Reliability Models

7. Failures, Faults and Defects

8. Testing

9. Software Visualization

10. Metrics

First Constraint:

Software Rejuvenation

The first constraint limits the state
space in the execution domain.
Today's software runs non-
periodically, which allows internal
states to grow without bound.
Software Rejuvenation is a new
concept that seeks to contain the
execution domain by making it
periodic. An application is
gracefully terminated and
immediately restarted at a known,
clean, internal state. Failure is
anticipated and avoided. Non-
stationary, random processes are
transformed into stationary ones.
One way to describe this is rather
than running a system for one year
with all the mysteries that untried
time expanses can harbor, run it only
one day, 364 times. The software
states would be re-initialized each
day, process by process, while the
system continued to operate.
Increasing the rejuvenation period
reduces the cost of downtime but
increases overhead. One system
collecting on-line billing data
operated for two years with no
outages on a rejuvenation interval of
one week.

A Bell Laboratories experiment
showed the benefits of rejuvenation.
A 16,000 line C program with
notoriously leaky memory failed
after 52 iterations. Seven lines of
rejuvenation code with the period
set at 15 iterations were added and
the program ran flawlessly.
Rejuvenation does not remove bugs;
it merely avoids them with
incredibly good effect.

A Software Engineering Course for Trustworthy Software
Continued from page 1

STN 9

Second Constraint:

Software Fault

Tolerance

If we cannot avoid a failure, then we
must constrain the software design
so that the system can recover in an
orderly way. Each software process
or object class should provide
special code that recovers when
triggered. A software fault tolerant
library with a watchdog daemon can
be built into the system. When the
watchdog detects a problem, it
launches the recovery code peculiar
to the application software. In call
processing systems this usually
means dropping the call but not
crashing the system. In
administrative applications where
keeping the database is key, the
recovery system may recover a
transaction from a backup data file
or log the event and rebuild the
database from the last checkpoint.
Designers are constrained to
explicitly define the recovery
method for each process and object
class using a standard library.

Third Constraint: Hire

Good People and Keep

Them

George Yamamura of Boeing’s
Space and Defense Systems reports
that defects are highly correlated
with personnel practices. Groups
with 10 or more tasks and people
with 3 or more independent
activities tended to introduce more
defects into the final product than
those who are more focused. He
points out that large changes were
more error-prone than small ones,
with changes of 100 words of
memory or more being considered
large. This may have some
relationship to the average size of

human working memory. The high
.918 correlation between defects and
personnel turnover rates is telling.
When Boeing improved their work
environment and development
process, they saw 83 percent fewer
defects, gained a factor of 2.4 in
productivity, improved customer
satisfaction and improved employee
moral. Yamamura reported an
unheard of 8 percent return rate
when group members moved to
other projects within Boeing.

Fourth Constraint:

Limit the Language

Features Used

Most communications software is
developed in the C or C++
programming languages. Les
Hatton’s book, Safer C: Developing

Software for High-Integrity and

Safety-critical Systems (ISBN: 0-07-
707640-0), describes the best way to
use C and C++ in mission-critical
applications. Hatton advocates
constraining the use of the language
features to achieve reliable software
performance and then goes on to
specify instruction by instruction
how to do it. He says, “The use of
C in safety-related or high integrity
systems is not recommended
without severe and automatically
enforceable constraints. However, if
these are present using the
formidable tool support (including
the extensive C library), the best
available evidence suggests that it is
then possible to write software of at

least as high intrinsic quality and
consistency as with other commonly
used languages.” For example, a
detailed analysis of source code
from 54 projects showed that once
in every 29 lines of code, functions
are not declared before they are
used.

C is an intermediate language,
between high level and machine
level. There are dangers when the
programmer can drop down to the
machine architecture, but with
reasonable constraints and
limitations on the use of register
instructions to those very few key
cases dictated by the need to achieve
performance goals, C can be used to
good effect. The alternative of using
a high level language that isolates
the programmer from the machine
often leads to a mix of assembly
language and high level language
code which brings with it all the
headaches of managing
configuration control and integrating
modules from different code
generators. The power of C can be
harnessed to assure that source code
is well structured. One important
constraint is to use function
prototypes or special object classes
for interfaces.

Fifth Constraint: Limit

Module Size and

Initialize Memory

The optimum module size for the
fewest defects is between 300 to 500
instructions. Smaller modules lead
to too many interfaces and larger
ones are too big for the designer to
handle. Structural problems creep
into large modules.

All memory should be explicitly
initialized before it is used.
Memory leak detection tools should
be used to make sure that a software
process does not grab all available
memory for itself, leaving none for
other processes. This creates
gridlock as the system hangs in a
wait state because it cannot process
any new data.

Continued on page 10

STN10

Sixth Constraint:

Reuse Unchanged

A study of 3,000 reused modules
showed that changes of as little as
10% led to substantial rework - as
much as 60% - in the reused
module. It is difficult for anyone
unfamiliar with a module to alter it
and this often leads to redoing the
software rather than reusing it. For
that reason, it is best to reuse tested,
error-free modules as is.

Summary:

A course to codify and teach
trustworthy software is proposed.
The main idea is to design to avoid
crashes and hangs so that software
based systems become trusted
systems. Trusted systems are those
that repeatedly and reliably provide
the same output for the same input
when the environment is the same.

Suggestions and comments on
course contents, approach and
importance are sought.

A Software Engineering Course for Trustworthy Software
Continued from page 9

About the Author

Mr. Bernstein is a recognized expert
in Software Technology, project
management, network management
and technology conversion. He is
president of the National Software
Council with the goal of improving
American software competitiveness,
making software trustworthy and
getting the software industry, the
government and academia to work
better together. He is now doing
consulting through his firm Have
Laptop - Will Travel and is the
Executive Technologist with
Network Programs, Inc. building
software systems for managing
telephone services.

Mr. Bernstein was an Executive
Director of AT&T Bell Laboratories
where he worked for 35 years.

As a software project manager he
successfully built, sold and deployed
a software system that automated
the 100 million paper records
telephone companies used to keep
track of telephone lines to
residential homes.

References:

1. Y. Huang, et. al. “Software Rejuvenation Analysis, Modules and Application,” Proceedings of the 25th Symposium on Fault

Tolerant Computing, IEEE Computer Society June 27-30, 1995.

2. www.fda.gov - U.S. Food and Drug Administration Website

3. Jeffrey M. Voas, et.al. Software Fault Injection: Inoculating Programs Against Errors, John Wiley and Sons, 1998,
ISBN: 0-471-18381-4

4. John Musa, et al. Software Reliability Measurement Prediction Application, McGraw Hill 1987, ISBN 0-07-044093-X

5. Peter Neumann, Computer Related Risks, Addison-Wesley 1995, ISBN 0-201-55805-X

6. Robert L. Glass, Software Reliability Guidebook, Prentice Hall 1979, ISBN 0-13-821785-8

7. Tom Gilb, Software Metrics ISBN; 0-87626-855-6

8. John Stankovic, “Tutorial: Hard Real-Time Systems,” 1988 IEEE Computer Society, ISBN: 0-8186-0819-6

 As a technologist he invented the
concepts of 'dynamic provisioning'
and 'routing to intelligence' which
are included in the seven patents he
holds. He saw the opportunities
contained in research into software
fault tolerance and championed its
commercialization. It is now used in
24 products deployed in over 500
sites.

As a contributor to the profession he
was recognized as a Fellow of the
IEEE, the ACM and Ball State
University. He is a member of the
Russian based International
Information Academy. He is a
visiting associate of the Center for
Software Engineering at the
University of Southern California

Author Contact Information

Larry Bernstein

Have Laptop-Will Travel
4 Marion Ave.

Short Hills, NJ 07078-2120
(973) 258-9213

lberstein@worldnet.att.net

mailto:lberstein@worldnet.att.net
http://www.fda.gov/
http://www.dacs.dtic.mil/

STN 11

Background

In high assurance systems,
compelling evidence is required that
the system delivers its services in a
manner that satisfies certain critical
properties. Examples of high
assurance systems include command
and control systems, weapons
systems, flight programs for
commercial and military aircraft,
control systems for nuclear plants,
and most medical systems (e.g.,
patient monitoring systems).
Critical properties high assurance
systems must satisfy including
service properties, i.e., properties of
the services that the system delivers.
For example, when a patient’s heart
stops, a patient monitoring system
may be required to sound an alarm.
Besides service properties, four
other classes of critical system
properties may be identified:
security properties, safety properties,
real-time properties, and fault-

tolerance properties. In most cases,
a high assurance system must satisfy
properties in more than a single
class. The patient monitoring
system, for example, must satisfy
not only service properties, but real-
time constraints (the alarm must
sound within some time interval),
fault-tolerance properties (the alarm
must sound even when a sensor
malfunctions), and security
properties (the system must protect
the privacy of the patient’s health
records). Note that a given property
may fall into more than a single
class.

In recent years, researchers have
proposed numerous approaches for
specifying, constructing, and
certifying high assurance systems.

The SCR Requirements Method: A Practical Approach to Developing
High Assurance Software Systems
by Constance Heitmeyer, Naval Research Laboratory

These include formal specification
notations, formal models, and
rigorous verification and validation
techniques (such as model checking
and mechanical theorem proving).
But, two difficult problems remain.
The first is the need for technology
to support the application of these
new techniques and methods to
practical systems. Without such
technology, opportunities to transfer
many of the basic research results to
industry are severely limited. Also
needed is a unified framework for
building systems that satisfy
multiple critical properties. This
need exists because not one but
several different approaches for
developing high assurance systems
have evolved (at least one for each
property class identified above).
Each approach has a different
overall philosophy of system
development and different
techniques for specification and
assurance. No single one of the
separate approaches is sufficient to
handle systems now being built that
must simultaneously satisfy
properties in different classes. Thus
a framework (i.e., formal
specification techniques, formal
models, assurance methods, etc.) is
needed for constructing systems that
must provide a set of critical
services and do so in a secure, safe,
timely, and fault-tolerant manner.

The SCR Requirements

Method

One framework that has recently
been developed for building high

assurance control systems is based
on the SCR (Software Cost

Reduction) requirements method.
Originally formulated in 1978 by
Naval Research Laboratory (NRL)
researchers to document the
requirements of the flight program
of the Navy’s A-7E aircraft5, SCR
has been used in practice by
numerous companies, including
Grumann, AT&T, Ontario Hydro,
and Lockheed, to specify software
requirements. Designed for use by
engineers, SCR has been applied to
a wide range of systems, including
telephone networks, control systems
for nuclear plants, and both military
and commercial flight control
systems.

The SCR method offers a tabular
notation for specifying
requirements. Underlying this
notation is a state machine model.
Experience has shown that
specifications in the SCR tabular
notation are relatively easy for
software developers to understand
and to construct. Moreover, tables
provide a precise, unambiguous
basis for communication among
developers and a natural
organization for independent
construction, inspection,
modification, and mechanical
analysis of parts of a large
specification, and finally, the tabular
notations scale. Evidence of the
scalability of tabular specifications
was demonstrated in 1993-94 by
engineers at Lockheed, who, in the
largest applications of the SCR
method to date, used tables to
specify the complete requirements
of the C-130J flight program, a
program containing over 250K lines
of Ada code.

Continued on page 12

STN12

The SCR Toolset

Introduced in 1995, SCR5,6 is an
integrated suite of tools supporting
the SCR requirements method. It
includes a specification editor for
creating a requirements
specification, a dependency graph

browser for displaying the variable
dependencies in the specification, a
consistency checker for detecting
specification errors (e.g., type errors
and missing cases), a simulator for
validating the specification, and a
set of verification tools for checking
that the specification satisfies
critical application properties, such
as security and safety properties.
All of the SCR tools are designed
for ease of use. Moreover, to the
extent feasible, the analyses
performed by the tools are fully
automatic. Except for the theorem
prover (see below), use of the tools
requires neither mathematical
sophistication nor theorem proving
skills. Currently, more than 100
academic, government, and
industrial organizations in the US,
the UK, Canada, Denmark, and
Germany are experimenting with
SCR. Further, many universities in
both the U.S. and Canada include
material on the SCR method and
tools in their software engineering
courses. The SCR tools are briefly
described below.

Specification Editor. To create,
modify, or display a requirements
specification, the user invokes the
specification editor. Each SCR
specification is organized into
dictionaries and tables. The
dictionaries define the static
information in the specification,
such as the user-defined types and

The SCR Requirements Method
Continued from page 11

the names and values of variables
and constants. Each table specifies
how a given variable changes in
response to an input event. One
important class of tables specifies
the values of the system outputs.

Dependency Graph Browser.

Understanding the relationship
between different parts of a large
specification can be difficult. To
address this problem, the
Dependency Graph Browser (DGB)
represents the dependencies among
the variables in a given SCR
specification as a directed graph.
By examining this graph, a user can
detect specification errors, e.g.,
undefined variables and circular
definitions. The user can also use
the DGB to display, extract, and
analyze parts of the dependency
graph, e.g., the subgraph containing
all variables upon which a given
system output depends.

Consistency Checker. The
consistency checker3 automatically
detects syntax and type errors,
variable name discrepancies,
missing cases, nondeterminism, and
circular definitions. When an error is
detected, the consistency checker
facilitates error correction by
displaying the table (or dictionary)
containing the error and highlighting
the erroneous entries. It also
provides an example that
demonstrates the error. A form of
static analysis, consistency checking
is usually less expensive
computationally than model
checking. In developing an SCR
specification, the user normally
invokes the consistency checker first
and postpones more expensive
analysis, such as model checking,

until later. Exploiting the special
properties guaranteed by
consistency checking (e.g.,
determinism) can make later
analyses more efficient.

Simulator. To validate a
specification, the user can run
scenarios through the SCR simulator
and inspect the results to ensure that
the specification captures the
intended behavior. Additionally, the
user can define properties believed
to be true of the required behavior
and, using simulation, execute a
series of scenarios to determine if
any violate the properties. The SCR
simulator also supports the
construction of graphical front-ends,
tailored to particular application
domains. One example is a
graphical front-end for pilots to use
in evaluating an attack aircraft
specification (see Figure 1). Rather
than clicking on variable names,
entering values for them, and seeing
the results of simulation presented
as variable values, a pilot clicks on
visual representations of cockpit
controls and views the results on a
simulated cockpit display. This
front-end allows the pilot to move
out of the world of requirements
specification and into the world of
attack aircraft, where he is the
expert. Clearly, a graphical
interface facilitates validation of the
specification.

Verification Tools. SCR provides
three tools for checking that a
requirements specification satisfies
critical application properties. One
tool is the model checker Spin.
After a developer uses the SCR
tools to generate a tabular

STN 13

representation of the requirements,
he can use SCR to automatically
translate the tabular representation
into the language of Spin. Then, the
developer can invoke Spin to check
that the specification satisfies
properties of interest5. If Spin
detects a property violation, the
developer can then apply the SCR
simulator to demonstrate and
validate the violation. Because the
state space of most specifications of
practical systems is usually too large
to analyze completely, model
checking is typically used to detect

violations of properties rather than
to verify properties. To verify that
an SCR specification satisfies
selected properties, the developer
may apply either of two additional
tools. One tool called TAME1

(Timed Automata Modeling
Environment) is designed to
facilitate mechanical theorem
proving by reducing the human
effort required to prove a property.
TAME provides an interface to the

mechanical proof system PVS. A
second tool called Salsa2 uses
decision procedures and induction to
verify selected properties, in many
cases, automatically.

Practical Use of the

SCR Tools

To date, the SCR tools have been
applied in three pilot projects
external to NRL. In the first,
researchers at NASA’s IV & V
Facility used SCR to detect missing
cases and instances of
nondeterminism in the prose
requirements specification of
software for the International Space
Station. In the second project,
engineers at Rockwell Aviation used
the tools to expose 24 errors, many
of them serious, in the requirements
specification of an example flight
guidance system. Of the detected
errors, a third were uncovered by
entering the specification into the
toolset, a third in running the
consistency checker, and the
remaining third in executing the
specification with the simulator. In
a third project, researchers at the
JPL (Jet Propulsion Laboratory)
used SCR to analyze specifications
of two components of NASA’s Deep
Space-1 spacecraft for errors.

In addition, NRL has applied SCR
to two military systems. In the first,
NRL applied the SCR tools to a
sizable contractor-produced
requirements specification of the
Weapons Control Panel (WCP) of a
safety-critical weapons system5.
The tools uncovered numerous
errors in the contractor specification,
including a safety violation that

could result in the malfunction of a
weapon. In a second project, NRL
used the SCR tools to create and
analyze an SCR specification of a
moderately complex cryptographic
device (CD) for a US Navy radio
receiver7. Applying the SCR
verification tools, demonstrated that
the specification satisfies seven
security properties but violates an
eighth. Especially noteworthy is
that, in each project, translating the
original specification into the SCR
notation, using SCR to analyze the
specification for critical properties,
and building a simulation (i.e., a
working prototype of the system)
required slightly more than one
person-month. This small effort
demonstrates the utility and cost-
effectiveness of the SCR method.

Conclusions

The SCR tools can be distinguished
in three major ways from
commercial tools and other research
tools. First, unlike most commercial
tools, SCR has a formal foundation,
thus allowing mathematically sound
analyses (such as consistency
checking and model checking),
which are unsupported by most
current CASE tools. Second, the
SCR tools, unlike most research
tools, have a well-designed user
interface, are integrated to work
together, and provide detailed
feedback when errors are detected.
Finally, users of SCR can perform
significant analyses without detailed
guidance from application experts or
formal methods researchers, thereby
providing formal methods usage at
low cost.

Continued on page 14

 Figure 1. Customized

Simulator Front-End for an

Aircraft Specification

STN14

As demonstrated in the two NRL
pilot studies, the SCR method has
already been used to specify and to
analyze both safety properties and
security properties. The method
also provides a means of specifying
a system’s real-time requirements;
for example, in the case of the
patient monitoring system, the
requirement that “an alarm must be
sounded within 0.1 seconds after a
patient’s heart has stopped”.
Analyzing such requirements
specifications to ensure that they
satisfy critical real-time properties is
a topic of our current research. We
are also exploring the use of the
SCR method to specify and to
analyze a system’s fault-tolerance
requirements, to construct test cases
automatically, and to synthesize
efficient source code from validated
SCR requirements specifications.

About the Author:

Constance Heitmeyer heads the
Software Engineering Section of the
Naval Research Laboratory's Center

The SCR Requirements Method
Continued from page 13

References

1. M. Archer, C. Heitmeyer, and S. Sims, “TAME: A PVS Interface to Simplify Proofs for Automata Models,” Proceedings of

User Interfaces for Theorem Provers (UITP ‘98), Eindhoven, Netherlands, July 1998.

2. R. Bharadwaj and S. Sims, “Salsa: Combining Constraint Solvers with BDDs for Automatic Invariant Checking,”
Proceedings of Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2000), March 2000.

3. C. Heitmeyer, R. Jeffords, and B. Labaw, “Automated Consistency Checking of Requirements Specifications,”
ACM Transactions on Software Engineering, vol. 5, no. 3, July 1996, pp. 231-261

4. C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj, “SCR*: A Toolset for Specifying and Analyzing Software
Requirements,” Proceedings of Computer-Aided Verification (CAV’98), Vancouver, June-July, 1998.

5. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj, “Using Abstraction and Model Checking to Detect
Safety Violations In Requirements Specifications,” IEEE Transactions on Software Engineering, vol. 24, no. 11,
November 1998, pp. 927-948

6. K. Heninger, D. Parnas, J. Shore, and J. Kallander, “Software Requirements for the A-7E aircraft,” Technical Naval
Research Laboratory (NRL) report 3876, 1978.

7. J. Kirby, M. Archer, and C Heitmeyer, “SCR: A Practical Approach to Building a High Assurance COMSEC System,”
Proceedings of 15th Annual Computer Security Applications Conference (ACSAC ‘99), December 1999.

for High Assurance Computer
Systems. Since 1992, her section
has been developing a collection of
software tools to support the SCR
requirements method. In 1996, she
and D. Mandrioli published "Formal
Methods for Real-Time
Computing", a book whose purpose
is to introduce practitioners to some
of the most promising research
results in real-time computing.
Also, in 1996, Ms. Heitmeyer
served as Program Chair for the
COMPASS '96 Conference on
Assured Computing. In 1997, she
was General Chair of the 1997
International Symposium on
Requirements Engineering. She has
also served as an Associate Editor of
the Real-Time Systems Journal and
as a Guest Editor of a special issue
of the IEEE Transactions on

Software Engineering. Currently,
she is a Guest Editor of a special
issue of the Kluwer journal, Formal

Methods in System Design, which is
devoted to tabular expressions in
software documentation and
analysis.

Ms. Heitmeyer frequently teaches
tutorials on the SCR approach to
software development. Her interests
are in requirements specification
and analysis, formal methods, and
real-time computing and in the
transfer of research results into
software practice.

For a copy of the SCR tools and the
User Guide to the tools, send a
request to C. Heitmeyer at her
E-mail address.

Author Contact Information

Constance Heitmeyer

Naval Research Laboratory
(Code 5546)

Washington, DC 20375

Phone: (202) 767-3596
Fax: (202) 404-7942

heitmeyer@itd.nrl.navy.mil
www.chacs.itd.nrl.navy.mil/SCR/

http://www.dacs.dtic.mil/
http://www.chacs.itd.nrl.navy.mil/SCR/
mailto:heitmeyer@itd.nrl.navy.mil

STN 15

Introduction

The Team Software Process (TSP)1

defines how to create and manage
software development teams.
Software engineers who will
become team members are first
trained in how to do quality work,
follow a defined process, and make
process measurements that improve
the quality of their work. This
training is provided by an intensive
120-hour course that teaches the
Personal Software ProcessSM (PSP)2.
The PSP course is very effective in
teaching software engineers how to
develop schedules they can meet,
how to monitor their progress, and
how to detect and remove defects in
their code. The discipline followed
by PSP-trained engineers enables
high performance when working in
teams, but individual process
discipline is not enough. The Team
Software Process provides the
additional guidance individual
engineers need to work effectively
as part of teams.

With the TSP, each project starts
with a team launch guided by TSP
forms, scripts, and standards. The
launch process is not a training
exercise; team members work
directly on their project, establishing
team roles, team goals, detailed task
plans (typically ten task-hours or
less for the lowest level tasks), risks,
assignments to tasks, and a
presentation of the project’s plan to
management. The team meets
weekly to measure progress and
make any needed adjustments. Since
the team has developed team goals
and implementation plans, its
members strive to meet the team’s
objectives.

Team Software Process Reliability Results
John B. Goodenough, Software Engineering Institute

The Team Software

Process (TSP)

The Team Software Process has
been developed by the Software
Engineering Institute. The results
presented here are drawn from 18
projects reported by four
organizations: Boeing, Hill AFB,
AIS (a small software company),
and Teradyne. Data from the
projects have been combined to
illustrate team performance on
several dimensions, before and after
using TSP. Before/after ranges are
shown for deviation from schedule,
system test duration, acceptance test
defects/KLOC, and post-release
defects/KLOC. (“Before” data was
not reported for every dimension by
every organization.)

The effect of TSP on deviation from
predicted schedule is striking. The
organizations reporting schedule
deviation data prior to their use of
TSP said their average deviation
from planned schedules ranged from
27% for the best reporting
organization to 112% for the

organization reporting the worst
performance. For the 18 projects
using TSP, the deviation from
planned schedules ranged from –8%
to +5%. The results are shown in
Figure 1. This reflects a dramatic
improvement in achieving planned
schedules compared to the previous
experience of the reporting
organizations.

PSP training dramatically increases
the ability of software engineers to
detect defects injected in code prior
to system test. Using the Team
Software Process reinforces and
encourages continued use of PSP
techniques by all team members.
Because defects are detected early
and thoroughly, system test
durations are drastically shortened,
and the number of defects detected
at acceptance test and after delivery
are extremely low. As shown in
Figure 2, system test duration
decreased from an average of one to
five days per KLOC to 0.1 to 1.0
days/KLOC. The number of
acceptance test defects reported
prior to use of TSP ranged from 0.1

to 0.7 defects per
KLOC (see Figure 3).
(The organization
reporting 0.1 defects/
KLOC was a CMM
Level 5 organization.)
Acceptance test
defects with the use
of TSP ranged from
0.02 defects/KLOC
(for the Level 5
organization) to 0.1
defects/KLOC (for all
the other
organizations,
including the

Continued on page 16

Figure 1. Schedule Deviation - Range

STN16

References

1. Humphrey, Watts S., Introduction to the Team Software Process,
Addison-Wesley, Reading, MA, 2000.

2. Humphrey, Watts S., A Discipline for Software Engineering, Addison-Wesley,
Reading, MA, 1995.

SM. Team Software Process, TSP, Personal Software Process, and PSP are service
marks of Carnegie Mellon University. Capability Maturity Model and CMM are
registered trademarks of Carnegie Mellon University.

Team Software Process Reliability Results
Continued from page 15

organizations operating at CMM
Level 2). And finally, reported post-
delivery defects (see Figure 4)
ranged from zero to 0.1 defects/
KLOC, a dramatic difference from
the previous performance of these
organizations.

In short, the investment in PSP and
TSP training pays off in
dramatically improved quality and
dramatically improved ability to
meet schedules, with improvements
being exhibited for both low and
high maturity organizations.

About the Author

John Goodenough is the Chief
Technical Officer of the SEI and
was named a fellow of the
Association for Computing
Machinery (ACM) in 1995. He is
the former leader of the Rate
Monotonic Analysis for Real-Time
Systems Project. He was a
Distinguished Reviewer for the Ada
95 language revision effort and has
served as head of the U.S.
delegation to the ISO Working
Group on Ada. He was the principal
author of the document specifying
the revision requirements for Ada 95
and has served as chair of the group
responsible for recommending
interpretations of the Ada language.

Before joining the SEI, Goodenough
was manager of the research and
development department of
SofTech, Inc. His work focused on
the Ada programming language. He
was the principal designer of one of
the candidate languages leading to
Ada. He later supported the Ada
development effort as a
distinguished reviewer for the
Department of Defense, led the Ada
Compiler Validation effort, and
helped develop Ada training
materials.

Figure 2. System Test Duration (Days/KLOC) - Range

Goodenough has worked at the
Wang Institute of Graduate Studies
as a visiting scholar, where he
lectured on software reusability and
testing and led seminars on object-
oriented languages. He also has
worked at the Air Force Electronic
Systems Division in Bedford, Mass.
There, he was responsible for
formulating contract and in-house
research and development, and he
sponsored the first research work on
software maintenance.

Author Contact Info

John B. Goodenough
Software Engineering Institute

Carnegie Mellon
Pittsburgh, PA 15213-3890

Phone: (412) 268-6391
Fax: (412) 268-5758

jbg@sei.cmu.edu
www.sei.cmu.edu/jbg/

Resu lts f rom 18 projects executed by severa lResu lts f rom 18 projects executed by severa lResu lts f rom 18 projects executed by severa lResu lts f rom 18 projects executed by severa lResu lts f rom 18 projects executed by severa l
organizations at different levels of process maturityorganizations at different levels of process maturityorganizations at different levels of process maturityorganizations at different levels of process maturityorganizations at different levels of process maturity
show that use of the Team Software Process (TSP)show that use of the Team Software Process (TSP)show that use of the Team Software Process (TSP)show that use of the Team Software Process (TSP)show that use of the Team Software Process (TSP)S MS MS MS MS M

y ie lds dramat ic improvement in the ab i l i ty ofy ie lds dramat ic improvement in the ab i l i ty ofy ie lds dramat ic improvement in the ab i l i ty ofy ie lds dramat ic improvement in the ab i l i ty ofy ie lds dramat ic improvement in the ab i l i ty of
software engineers to produce very high qualitysoftware engineers to produce very high qualitysoftware engineers to produce very high qualitysoftware engineers to produce very high qualitysoftware engineers to produce very high quality
software, on time, at the predicted cost. A detailedsoftware, on time, at the predicted cost. A detailedsoftware, on time, at the predicted cost. A detailedsoftware, on time, at the predicted cost. A detailedsoftware, on time, at the predicted cost. A detailed
presentation of these results is to be given at thepresentation of these results is to be given at thepresentation of these results is to be given at thepresentation of these results is to be given at thepresentation of these results is to be given at the
Software Technology Conference in May 2000.Software Technology Conference in May 2000.Software Technology Conference in May 2000.Software Technology Conference in May 2000.Software Technology Conference in May 2000.

Figures on page 17

http://www.sei.cmu.edu/jbg/
mailto:jbg@sei.cmu.edu

STN 17

Figure 3. Acceptance Test Defects/KLOC Figure 4. Post-Release Defects/KLOC - Range

The Defense Technical Information
Center Information Analysis Center
Program Management Office will
sponsor an IAC Awareness
Conference on May 16, 2000 at the
Hope Hotel, Wright Patterson Air
Force Base, Dayton, Ohio.

Conference Theme and

Objective

The theme of this conference is
“Key Challenges” that need to be
conquered to enable us to meet
Vision 2010.

The objective of this conference is to
explore the strategic direction and
the resulting requirements of
information technology and services
necessary to support the DoD. To
that end, an aggressive agenda with
senior-level participants will provide
an opportunity to discuss and share
valuable insights between Research
and Development and the warfighter
community.

Announcement: IAC Awareness Conference
“Key Challenges“

Who Should Attend?

The meeting is open to all
Department of Defense (DoD) and
associated industry personnel. This
meeting will promote IAC
Awareness with an emphasis on the
needs of the warfighter. Those in
attendance will include policy
makers, DoD program managers,
researchers, analysts, information
providers, and information users.
This conference will address the
information needs of the warfighter,
along with the current and future
information technology initiatives to
support those needs in the new
millennium. The impact of changes
in the policies, procedures, and
technologies of information now
and in the future and the subsequent
impact on DoD will also be
addressed.

DoD IACs will have exhibits in the
display area highlighting their
capabilities, products, and services.

May 16, 2000

Hope Hotel

Wright Patterson AFB

Dayton, Ohio

Registration

Electronic Registration is
encouraged. Register on-line at:
http://iac.dtic.mil/surviac

Or Contact:

Donna Egner at SURVIAC

Phone: (937) 255-4840
Fax: (937) 255-9673

degner@bah.com.

http://iac.dtic.mil/surviac/
http://iac.dtic.mil/
http://www.dacs.dtic.mil/
mailto:degner@bah.com
http://www.dacs.dtic.mil/

STN18

Introduction

In an increasing number of cases,
the acquirers of software intensive
systems for both Government and
civilian applications are requiring
that these systems meet certain
availability and/or reliability
objectives. This article presents
aspects of a method and supportive
tools that have been developed and
applied at Lockheed Martin in the
estimation of availability and
reliability of various large software
intensive systems. The methodology
and supportive tools have evolved
from work started at the former IBM
Federal Systems, now various
Lockheed Martin companies.

Availability and

Reliability

Availability and reliability are
closely related measures. A
definition for availability is the
proportion of some period of time
that the system is operating
satisfactorily. What satisfactorily
means must be defined, of course. A
definition for reliability is the
probability that the system does not
fail for a stated length of time,
starting from some specific time.
For calculations/estimates of
availability, we need information
about both failure times/rates and
time/rates for service restoration
(not necessarily repair). We have
used the term system in the
definitions just presented. We could
also apply them to the hardware or
software components of a system,
such as a software intensive system.
We can combine the unavailabilities
for a system due to software or due
to hardware (and to procedures on
some occasions) into an overall

Practical Software and System Availability and Reliability Estimation
by John Gaffney, Lockheed Martin

figure for system unavailability;
availability is equal to one minus
unavailability.

There are two principal types of
availability and reliability models,
the black box and the white box. The
former requires detailed knowledge
of the (hardware and software)
elements of the system of concern.
The latter looks at the externally
visible behavior of the system,
without requiring knowledge of the
detailed nature of such elements or
their interactions (such as those
among failure tolerant software and/
or hardware units which might mask
the effects of certain types of
hardware or software failures from
the external visible behavior of the
system)

The principal parameter to be
estimated for hardware or software
failure is λ, the failure rate (such as
failures per hour, month, etc.). In the
case of software, this is actually a
function of time, as the failure rate
eventually decreases as defects are
discovered and few if any new
defects (not present before testing
began) are added. In the case of
hardware, we often consider λ to be
fixed; that is, the failure rate for the
hardware or for hardware-caused
system outages (under the white box
model as defined above) is constant
because the hardware is assumed to
have “burned in” or is mature or has
a mature design. We now focus on
software as it has a non-constant λ.
After the software has been
delivered (i.e., placed in operation),
the function λ(t) is often taken to be
a monotonically decreasing function
of time, say of the form:

λ(t)= λ
0
*(exp (-bt)),

where λ
0
=E*b, E=the number of

defects in the software at t=0 (i.e., at
delivery/start of operation) and
b=1/t

p
, where t

p
, the time constant, is

the time at which 0.63*E defects
will have been discovered. In
actuality, this is often not the case
for a period of time after delivery of
the software/when it is placed in
operation. During that period, there
is often a “surge” of defect
discovery. This is due to one or both
of two principal causes, the test
environment did not completely
accurately represent the operational
environment (and there were
different stimuli of types not applied
during testing), and/or there was
additional software, not present in
the test suite, that opened other error
paths.

We can obtain an estimate for E in
various ways. The most accurate is
to fit actual defect discovery data,
obtained during the development
and testing process and fit it to an
assumed equation, say using the
STEER model tool, the original
version of which was developed at
IBM, Federal Systems. If both
integration and testing are
considered, the form of the time-
based model of defect discovery is a
Rayleigh curve (or another, similar
monomodal-single-peak-curve of
the Weibull family). Then, an
estimate for E would be the area
under the right hand side of the
monomodal curve from the time of
the delivery of the software (or
when it is placed in operation) to
infinity. Or, alternatively, an
exponential fit can be made to the
defect discovery data obtained from
the time of the peak forward. That
is, the portion of the curve to the
right of the peak can be

STN 19

approximated as an (“decaying”)
exponential, which is the form given
above for λ(t). Then, the values for
the parameters E and b (=1/t

p
) for

this curve can be used to estimate
λ(t) in the vicinity of some value for
t, t=t

n
, where it is desired to compute

the software reliability or
availability or the unavailability of
the system due to software-caused
failures.

About the Author

John Gaffney is a Software
Engineering Consultant, at
Lockheed Martin, Mission Systems
in Rockville, MD. He provides
support to Lockheed Martin
organizations in software and
systems measurement. Earlier, he
worked at the Software Productivity
Consortium where he started the
measurement program. Previously,
he worked at IBM. He has taught at
Polytechnic University, Brooklyn,
NY and at Johns Hopkins. He holds
a BA from Harvard, and MS from
Stevens Institute of Technology, and
is a Registered Professional
Engineer (Electrical) in the District
of Columbia.

Author Contact Info

John Gaffney Jr.

Lockheed Martin
Mission Systems and Software

Resource Center
9211 Corporate Boulevard

Rockville, MD 20850

Phone.: (301) 640-2359
Fax: (301) 640-2429

 j.gaffney@lmco.com

DACS Product Announcement:
The DACS Software Reliability Sourcebook

Introduction

Over the past several years, the phenomenal growth of software
reliability engineering has resulted in hundreds of hardcopy and on-line
resources for both researchers and practitioners.

There appears to be a need, therefore, to bring together basic software
reliability techniques and available resources for additional information
into one concise handbook that can be used to meet the day-to-day
requirements of the practitioner while still satisfying those wishing to
expand their understanding of the subject matter. Development and
publication of The DACS Software Reliability Sourcebook is intended
to meet that need.

Description

The DACS Software Reliability Sourcebook is intended to be a resource
for software developers, testers and managers that will include, as a
minimum:

❏ Basic mathematical concepts associated with software reliability
engineering

❏ Basic software reliability definitions and metrics

In addition to these basic concepts and definitions the following areas
of the DACS Software Reliability Sourcebook will have an additional
DACS URL location that will cross-reference to applicable Websites
and keep these references up-to-date in “real-time”.

� Concise descriptions and examples of the most popular or
promising software reliability engineering models, analytical
techniques and test practices

� Descriptions of appropriate automated tools

� Bibliographic references, where readers can go for additional
information

� On-line references, where readers can go for additional
information

� Identification of current research initiatives and areas of software
reliability that require further study

� Identification of COTS software reliability issues and resources

� Concise descriptions of current standards and specifications that
deal with software reliability, including ordering information
from the appropriate standards organizations

Material for this publication will be developed from the available
published literature, Internet on-line searches, internal DACS software
reliability engineering expertise, and the DACS Expert Network.

This Product Will Be Available, June 2000.

http://www.dacs.dtic.mil/
mailto: j.gaffney@lmco.com

DoD Data & Analysis Center for Software
P.O. Box 1400
Rome, NY 13442-1400

Return Service Requested

First-Class Mail
U.S. Postage

P A I D
Colo. Spgs., CO
Permit No. 745

Software Tech News on the World Wide Web

This newsletter, including referenced full-length

articles, is available on the web at:

www.dacs.dtic.mil/awareness/newsletters/listing.shtml

Other Software Reliability On-line Resources

DACS Software Reliability Topic Area - www.dacs.dtic.mil

High Integrity Software System Assurance (HISSA) - http://hissa.nist.gov/

Quanterion Solutions - www.acq.osd.mil/te/

Reliability Analysis Center (RAC) - http://rac.iitri.org

Software Assurance Technology Center (SATC) at NASA - http://satc.gsfc.nasa.gov/

Software Reliability Engineering Information Center - www.enre.umd.edu/srel/main.htm

Software Technology for Adaptable, Reliable Systems (STARS) - http://source.asset.com/stars/

Software Testing Institute - www.ondaweb.com/sti/

Article Reproduction

Articles may be reproduced as long as the DACS copyright message is noted as follows:

“This article was originally printed in the DoD DACS Software Tech News, vol. 3, no. 4.
Requests for copies of the referenced newsletter may be submitted to the following address:

DoD Data & Analysis Center for Software
Attn: Lon R. Dean, Editor
PO Box 1400
Rome, NY 13442-1400
(800) 214-7921; Fax (315) 334-4964;
news-editor@dacs.dtic.mil

An archive of past newsletters is available at www.dacs.dtic.mil/awareness/newsletters/listing.shtml.

In addition to the copyright message, we ask that you send us three copies of any document that references any
article apprearing in the DoD Software Tech News.

Thank you for your interest in the products and services of the DoD Data & Analysis Center for Software (DACS).

http://www.dacs.dtic.mil/
http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml
http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml
http://hissa.nist.gov/
http://www.acq.osd.mil/te/
http://rac.iitri.org/
http://satc.gsfc.nasa.gov/
http://www.enre.umd.edu/srel/main.htm
http://source.asset.com/stars/
http://www.ondaweb.com/sti/
mailto:news-editor@dacs.dtic.mil

DoD DACS Products & Services Order Form

Name: Position/Title:

Organization: Acronym:

Address:

City: State: Zip Code:

Country: E-mail:

Telephone: Fax:

Product Description Format Quantity Price Total

The DACS Information Package
❏ Including: 2 recent Software Tech News newsletters, and

several DACS Products & Services Brochures Documents FREE FREE

Empirical Data
❏ Architecture Research Facility (ARF) Error Dataset Disk $ 50
❏ Goel-Okumoto Software Reliability Model 1.0
❏ NASA / Software Engineering Laboratory (SEL) Dataset CD-ROM $ 50
❏ NASA / AMES Error/Fault Dataset Disk $ 50
❏ Software Reliability Dataset Disk $ 50
❏ DACS Productivity Dataset Disk $ 50

Technical Reports
❏ A Business Case for Software Process Improvement (Revised) Document $ 25
❏ Measuring ROI from Software Eng Management Spreadsheet CD-ROM $ 50
❏ A History of Software Measurement at Rome Laboratory Document $ 25
❏ An Analysis of Two Formal Methods: VDM and Z Document $ 25
❏ An Overview of Object-Oriented Design Document $ 25
❏ Artificial Neural Networks Technology Document $ 25
❏ A Review of Formal Methods Document $ 25
❏ A Review of Non-Ada to Ada Conversion Document $ 25
❏ Software Design Methods Document $ 25
❏ Distributable Database Technology Document $ 25
❏ Mining Software Engineering Data: A Survey Document $ 50
❏ Object Oriented Database Management Systems (Revisited) Document $ 50
❏ Software Analysis and Testing Technologies Document $ 25
❏ Software Design Methods Document $ 25
❏ Software Prototyping and Requirements Engineering Document $ 25
❏ Software Interoperability Document $ 25
❏ Software Reusability Document $ 25
❏ Understanding & Improving Technology Transfer in Soft Eng Document $ 50
❏ Using Defect Tracking & Analysis to Improve Software Qual Document $ 50

❏ DACS Technical Reports CD (Includes reports listed above) CD-ROM $ 200

Bibliographic Products
❏ Rome Laboratory Research in Software Measurement Document $ 25
❏ DACS Custom Bibliographic Search Disk $ 40
❏ DACS Software Engineering Bibliographic Database (SEBD) CD-ROM $ 50

Number of Total
Items Ordered Cost

Method of Payment:
❏ Check ❏ Mastercard ❏ Visa

Credit Card # ___ Expiration Date _____________________________

Name on Credit Card ___________________________________ Signature __________________________________

Mail this form or: Phone: (800) 214-7921, Fax: (315) 334-4964
E-mail: cust-liasn@dacs.dtic.mil

This form is also on-line at: www.dacs.dtic.mil/forms/orderform.shtml

*Note: All Disks
are available in

PC or Mac

FREE withSpreadsheet

mailto:cust-liasn@dacs.dtic.mil
http://www.dacs.dtic.mil/forms/orderform.shtml

DoD Data & Analysis Center for Software
Attn: DACS Customer Liaison
PO. Box 1400
Rome, NY 13442-1400

---fold here---

---fold here---

Fix
postage

here

